

PR-003-1602001

Seat No.

M. Phil. (Sem. II) Examination

August - 2020

Mathematics: 18 - CMT - 20001 (Some Topics in Algebraic Topology)

Faculty Code: 003

Subject Code: 1602001

Time: 3 Hours] [Total Marks: 100

Instructions: (1) All questions are compulsory.

(2) Each question carries 20 marks.

1 Answer following ten questions:

 $10 \times 2 = 20$

- (i) Define Basis for closed sets in a topological space (X, τ) .
- (ii) Let (X, τ) be a topological space and \mathcal{C} be a basis for closed sets in X. Prove that $\mathcal{B} = \{X C/C \in \mathcal{C}\}$ is a basis for (X, τ) .
- (iii) Define term: compact space. Give an example of a topological space is a compact space and give an example of a topological space is not a compact space too.
- (iv) Define term: finite intersection property.
- (v) Define Filter and Ultra Filter.
- (vi) Prove that, every singleton set in \mathbb{R} is zero set of \mathbb{R} .
- (vii) Define term Z-filter.
- (viii) Define C^* embedded and C embedded.
- (ix) Define fixed ideal, free ideal, fixed Z-filter and free Z-filter.
- (x) Define two equivalent compactifications.
- 2 Answer any two questions:

 $2 \times 10 = 20$

- (1) Let X be a topological space and I be an ideal of C(X). Prove that $Z(I) = \{Z(f) | f \in I\}$ is a Z-filter on X.
- (2) Let \mathcal{F} be a Z-filter on X. Prove that $Z^{-1}(\mathcal{F}) = \{ f \in C(X) / Z(f) \in \mathcal{F} \}$ is an ideal of C(X).

PR-003-1602001]

1

[Contd....

- (3) Let $f, g \in C(X)$. Prove that
 - (1) $Z(f g) = Z(f) \cup Z(g)$,
 - (2) Z(|f|) = Z(f),
 - (3) $Z(|f|+|g|)=Z(f)\cap Z(g),$
 - (4) $Z(f) \cap Z(g) \subseteq Z(f+g)$ and
 - (5) $Z(f) \cap Z(g) = Z(f^2 + g^2).$
- 3 Answer any one question:

 $1 \times 20 = 20$

- (1) Let (K, h) be a compactifications of X and h(X) is C^* -embedded in K. Prove that (K, h) is equivalent to $(\beta X, e)$.
- (2) Prove that, every free maximal ideal in C(X) contain the map $j: \mathbb{N} \to \mathbb{R}$ defined by $j(n) = \frac{1}{n}$, for every $n \in \mathbb{N}$.
- (3) Let X be a dense subspace of T. Prove that following statements are equivalent:
 - (1) For a compact Hausdorff space Y, if $f: X \to Y$ is continuous, then there is a continuous map $g: T \to Y$ such that g(x) = f(x), for all x in X.
 - (2) X is C^* -embedded in T.
 - (3) If Z_1, Z_2 be two disjoint zero sets in X, then closure of Z_1 in T and closure of Z_2 in T are disjoint.
 - (4) If Z_1, Z_2 be two zero sets in X, then closure of $Z_1 \cap Z_2$ is equal to intersection of closure of Z_1 in T and closure of Z_2 in T.
 - (5) There is a unique Z ultra filter \mathcal{F} on X such that $\mathcal{F} \rightarrow p$ in T.
- 4 Answer any two questions:

 $2 \times 10 = 20$

- (a) Give an example of a C^* -embedded subspace, which is not C-embedded with require justification.
- (b) Let X be a space and $p \in X$. Prove that $M_p = \{ f \in C(X) / f(p) = 0 \}$ is a maximal ideal in C(X).
- (c) Let X, Y be two compact spaces. Prove that, X and Y are isomorphic if and only if C(X), C(Y) are isomorphic.

5 Answer any two questions:

 $2 \times 10 = 20$

- (1) Define Z-ideal. Let $\{I_{\alpha}/\alpha \in J\}$ be a family of Z-ideals in C(X). prove that $\bigcap_{\alpha \in J} I_{\alpha}$ is also a Z-ideal in C(X).
- (2) Let X be a compact Hausdorff space and I be any ideal in CC(X). Prove that the closure of I is also an ideal in CC(X), where CC(X) is the set of all complex valued function on X.
- (3) Let I be a Z ideal in C(X). Does I the Jacobson radical in (X)? Justify your answer.
- (4) Let X be a space and I be an ideal in C(X). Prove that following statements are equivalent:
 - (i) $Z^{-1}(Z(I)) = I$
 - (ii) If $f \in C(X)$ and $Z(f) \in Z(I)$, then $f \in I$.
 - (iii) If $f \in C(X)$ and $Z(f) \in Z(g)$, for some $g \in I$, then $f \in I$.